Synthesis of Benzoxazoles from 2-Aminophenols and β -Diketones Using a Combined Catalyst of Brønsted Acid and Copper Iodide

Muhammad Shareef Mayo,† Xiaoqiang Yu,*,† Xiaoyu Zhou,† Xiujuan Feng,† Yoshinori Yamamoto,†,‡ and Ming Bao*,†

† State Key Labor[ato](#page-4-0)ry of Fine Chemicals, Dalian University of Technology, Dalian 116023, China ‡ WPI-AIMR (WPI-Advanced Institute for Materials Research), Tohoku University, Sendai 980-8577, Japan

S Supporting Information

[AB](#page-4-0)STRACT: [Cyclization r](#page-4-0)eactions of 2-aminophenols with β diketones catalyzed by a combination of Brønsted acid and CuI are presented. Various 2-substituted benzoxazoles were obtained through these reactions. Different substituents such as methyl,

chloro, bromo, nitro, and methoxy on 2-aminophenol are tolerated under the optimized reaction conditions.

The development of convenient and efficient methods for the synthesis of benzoxazoles is attracting considerable attention. Benzoxazoles are used as versatile and key synthetic intermediates for the preparation of several natural products¹ and bioactive compounds.² Regarding the synthesis of these compounds, different approaches have been reported in pa[st](#page-4-0) years, which include the [co](#page-4-0)ndensation reactions of 2-aminophenols with either carboxylic acids/derivatives 3 or aldehydes⁴ under strong oxidative conditions, the intramolecular cyclization of 2-haloanilides/analogues⁵ or 2-hydro[xy](#page-4-0)anili[d](#page-4-0)es, $^{\circ}$ and others.⁷ These methods are undoubtedly effective but suffer from drawbacks such as requiri[ng](#page-4-0) microwave radiation, hightempe[ra](#page-4-0)ture conditions, special catalysts, use of a molar equivalent or excess amount of an additive, or expensive and/ or noncommercially available starting materials. Thus, the development of novel methods under mild reaction conditions is necessary.

Recently, the cyclization reactions of β -diketones with 2aminothiophenols/2-aminoanilines to furnish benzothiazoles and benzimidazoles have been reported by our group.⁸ This reaction smoothly proceeds in the presence of Brønsted acid under solvent-free conditions or in acetonitrile (CH_3CN) (CH_3CN) (CH_3CN) under oxidant-, transition-metal-, and radiation-free conditions. This success in achieving cyclization reactions of 2-aminothiophenols/2-aminoanilines with β -diketones encouraged us to examine the cyclization reactions of 2-aminophenols with β diketones under similar reaction conditions. This paper reports the cyclization reactions of 2-aminophenols with $β$ -diketones occurring in the presence of p-toluene sulfonic acid (TsOH· $H₂O$) and copper iodide (CuI) to produce benzoxazoles.

The reaction conditions were screened by using 2-aminophenol (1a) and 2,4-pentanedione (2a) as starting materials, and the results are summarized in Table 1. The reaction of 1a with 2a was initially performed under the same reaction conditions as those in the reactions of 2-aminothiophenols/2 aminoanilines with $2a$ (in CH₃CN in the presence of TsOH \cdot $H₂O$ at 80 °C for 16 h).⁸ The desired product, 2methylbenzoxazole (3a), was produced with only 45% yield

Table 1. Screening of Reaction Conditions^a

a Reaction conditions: 2-aminophenol (1a, 0.5 mmol), 2,4-pentanedione (2a, 0.75 mmol), acid catalyst (10 mol %), metal salt (10 mol %) in a solvent (4.0 mL) at 80 °C for 16 h in a sealed reactor. %) in a solvent (4.0 mL) at 80 °C for 16 h in a sealed reactor.
^bIsolated yield. 'With 20 mol % of acid catalyst TsOH·H₂O. ^dNo reaction.

(entry 1). This yield of 3a cannot be significantly increased even after increasing the acid catalyst loading 2-fold (entry 2, 47% yield). We then tried different salts of copper, iron, and

Received: March 14, 2014 Published: June 3, 2014

Table 2. Synthesis of Benzoxazoles from 2-Aminophenols and β -Diketones^a

 \sim NH₂

ö $\ddot{\Omega}$

TsOH-H₂O (10 mol%)

a
Reaction conditions: 2-aminophenols (1, 0.5 mmol), β-diketone (2, 0.75 mmol), TsOH₁H₂O (10 mol %, 9.51 mg), and CuI (10 mol %, 9.50 mg) in CH₃CN (4 mL) at 80 °C for 16 h. ^b Isolated yield. ^cByproduct 4a was also separated. ^dThe reaction was carried out in a sealed reactor at 100 °C.
^COnly intermediate 4b was isolated ^fToluene was used as a sol Conly intermediate 4b was isolated. Figurence was used as a solvent instead of acetonitrile; the reaction was carried out in a sealed reactor at 130 °C.
^COnly intermediate 4b was isolated. Figurence was used as a separa Byproduct 4c was also separated. ^{*h*}Byproduct 4d was also separated. 'Benzoxazole 3d was also separated in 31% yield as a major product.

			Me
4a, 10% yielld	4b, 45% yield	4c, 29% yield	4d, 17% yield

nickel as a cocatalyst in the presence of $TsOH·H₂O$ to increase the product yield (entries 3−10). Among the salts tested, CuI was found to be the most suitable cocatalyst (entry 5, 82% yield). Different acids such as benzoic acid (PhCOOH), acetic acid (CH₃COOH), D-camphor-10-sulfonic acid (DCSA), and hydrochloric acid (HCl) with CuI did not further improve the product yield (entries 11−14). Finally, we screened different solvents using TsOH·H₂O and CuI as catalysts (entries 15− 18). Results showed that the use of ethanol (EtOH), 1,4 dioxane, and tetrahydrofuran (THF) as solvent failed to

produce the desired product 3a. However, 3a was obtained in 74% yield when 1,2-dichloroethane (DCE) was used as solvent. No reaction was observed in the absence of the acid catalyst TsOH \cdot H₂O (entry 19). Therefore, under the optimum conditions (TsOH \cdot H₂O and CuI as catalysts in CH₃CN at 80 °C for 16 h), the scope of the reaction was explored using various 2-aminophenols and $β$ -diketones. The results are summarized in Table 2.

A relatively low yield (56%) was obtained when the reaction of 1a with 3,5-heptanedione (2b) was carried out under

optimized conditions (Table 2, entry 2). However, a good yield similar to that of 3a was obtained when the reaction was performed at 100 °C in a sea[le](#page-1-0)d reactor (entry 1 vs 3; 3a, 82%; 3b, 76%). The treatment of 1a with 2,6-dimethylheptane-3,5 dione (2c) furnished the desired product 2-isopropylbenzo- [d]oxazole (3c) in low yield even at 100 \degree C, which may potentially be due to steric hindrance of bulky 2c (entry 4, 25% yield). When 1a was treated with 1,3-diphenylpropane-1,3 dione (2d) in CH₃CN at 80 °C, an intermediate (E) -3-(2hydroxyphenylamino)-1,3-diphenylprop-2-en-1-one (4b) was separated in 45% yield as a sole product (entry 5). However, the desired product 2-phenylbenzoxazole (3d) was finally produced in relatively low yield when the reaction was performed at high temperature $(130 \degree C)$ using toluene as a solvent (entry 6, 49% yield). The reactions of 5-methyl-2 aminophenol (1b), 4-methyl-2-aminophenol (1c), 4-methoxy-2-aminophenol (1d), 4-chloro-2-aminophenol (1e), 5-chloro-2 aminophenol $(1f)$, 4-bromo-2-aminophenol $(1g)$, and 4-nitro-2-aminophenol (1h) with β -diketones 2a and 2b smoothly proceeded to give benzoxazole products 3e−3r in 64 to 89% yields (entries 7−20). From these results, it is concluded that the different substituent (either electron-donating group or electron-withdrawing group) on 2-aminophenol has almost insignificant effect on the reaction yield. The low yield of product 5-nitro-2-phenylbenzo[d]oxazole (3s) demonstrated again that 2d is less reactive (entry 21). To evaluate the reactivity of acetyl and benzoyl groups, an asymmetric βdiketone, 1-methyl-3-phenyl-1,3-dione (2e), was examined with 1c. The benzoxazole product 3g was produced in 70% yield (entry 22). This result reinforced our previous evaluation that the reactivity of acetyl group is better than that of the benzoyl group.⁸ We also tried the reaction of asymmetric diaryl β diketone, 1-(4-methoxyphenyl)-3-phenylpropane-1,3-dione (2f), [wi](#page-4-0)th 1a (entry 23). Two products, 2-(4-methoxyphenyl) benzo $[d]$ oxazole (3t) and 3d, were separated in 15 and 31% yields, respectively. Finally, we tried the reaction of 2 aminopyridin-3-ol (1i) with 2a but failed to produce the desired product 2-methyloxazolo[4,5-b]pyridine (3t) under optimized reaction conditions. However, 3t was produced in 59% yield at a high temperature (entry 24, 130 °C). During the course of our experiments, we also observed the byproducts N- (2-hydroxyphenyl)acetamide (4a, 10% yield), N-(5-chloro-2 hydroxyphenyl)acetamide (4c, 29% yield), and N-(5-bromo-2 hydroxyphenyl)acetamide (4d, 17% yield) when 1a, 1e, and 1g were treated with 2a, respectively.

To explore the reaction mechanism, we conducted controlled experiments under the optimized reaction conditions (Scheme 1). Reaction of 1a with 2a over a period of 2 h generated intermediate 4e nearly exclusively (44% isolated yield); however, desired product 3a, along with byproduct 4a and intermediate 4e, could be obtained after 6 h of heating (70, 10, and 12%, respectively, Scheme 1). The intermediate 4e could be transformed to final product 3a under optimized conditions in the absence of acid catalyst $TsOH·H₂O$ (eq 2). With the findings presented in Table 1 (entry 19), we found that the Lewis acid catalyst CuI worked in the cyclization step. Finally, we tried to convert 4a into 3[a](#page-0-0) under optimized conditions, but no reaction was observed (eq 3). Based on these observations, a possible mechanism is illustrated in Scheme 2. The condensation reaction of 1a with 2a in the presence of Brønsted acid would occur to generate an intermediate 4e. Intermediate 4f would be generated in the presence of CuI, and then the intramolecular nucleophilic addition of 4f would take

Scheme 1. Control Experiments

Scheme 2. Possible Reaction Mechanism

place to produce adduct 4g. Finally, C−C bond cleavage would occur to generate the product 3a. In addition, the intermolecular nucleophilic addition of 4f with H_2O generated in the condensation reaction step would produce an adduct 4g′. Byproduct 4a would finally generate through C−C bond cleavage.

In summary, a novel and general method for the synthesis of benzoxazoles was developed using simple and readily available starting materials as well as a combined catalyst of Brønsted acid and copper iodide. The wide availability of the starting materials, mild reaction conditions, and experimental simplicity should make the present methodology useful in organic synthesis.

BEXPERIMENTAL SECTION

General Methods. Solvents were dried and degassed before use by standard procedures. NMR spectra were run in CDCl₃ or DMSO- d_6 on a 400 MHz instrument and recorded at the following frequencies: proton $(^1H$, 400 MHz), carbon $(^{13}C$, 100 MHz). The starting materials 1a−1i and 2a−2f are commercially available.

Representative Procedure for the Synthesis of Benzoxazoles. An oven-dried reaction tube (25 mL) with a magnetic stir bar was charged with $Ts(OH)·H₂O$ (9.51 mg, 0.1 mmol), CuI (9.50 mg, 0.1 mmol), 2-aminophenol (1a, 54.53 mg, 0.5 mmol), 2,4-pentanedione ($2a$, 75.0 mg, 0.75 mmol), and CH₃CN (4 mL). The reaction mixture was sealed and stirred at 80 °C for 16 h. The solvent was removed under reduced pressure, and the residue obtained was purified via silica gel chromatography (eluent: ethyl acetate/petroleum ether = 1:5) to afford 2-methylbenzo $[d]$ oxazole (3a) as a colorless oil (54.7 mg, 82% yield).

2-Methylbenzo $[d]$ oxazole (3a):^{5b} Yield 82%, 54.7 mg, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.27–7.29 (m, 2H), 7.45−7.47 (m, 1H), 7.64−7.67 ([m,](#page-4-0) 1H); 13C NMR (100 MHz, CDCl3) δ 14.7, 110.4, 119.6, 124.3, 124.6, 141.7, 151.2, 164.0.

2-Ethylbenzo[d]oxazole $(3b)$:^{5b} Yield 76%, 56.0 mg, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.47 (t, J = 7.6 Hz, 3H), 2.97 (q, J $= 7.6$ Hz, 2H), $7.29 - 7.31$ (m, 2H), $7.47 - 7.50$ (m, 1H), $7.68 - 7.70$ (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 10.9, 22.2, 110.2, 119.5, 124.0, 124.4, 141.4, 150.8, 168.1.

2-Isopropylbenzo[d]oxazole (3c):^{5b} Yield 25%, 20.0 mg, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.47 (d, J = 7.0 Hz, 6H) 3.22−3.29 (m, 1H), 7.29−7.31 (m[, 2](#page-4-0)H), 7.47−7.50 (m, 1H), 7.68−7.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.6, 29.2, 110.2, 119.9, 124.3, 124.7, 141.5, 151.0, 171.6.

2-Phenylbenzo[d]oxazole $(3d)$:⁹ Yield 49%, 48.0 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.34−7.38 (m, 2H), 7.52−7.60 (m, 4H), 7.77−7.79 (m, 1H), 8.25−[8](#page-4-0).27 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 110.8, 120.1, 124.7, 125.3, 127.3, 127.7, 129.1, 131.7, 142.2, 150.9, 163.2.

2,6-Dimethylbenzo[d]oxazole $(3e)$:⁹ Yield 74%, 54.7 mg, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 2.47 (s, 3H), 2.62 (s, 3H)[,](#page-4-0) 7.11 (d, J = 8.0 Hz, 1H), 7.27 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 21.6, 110.3, 118.6, 125.1, 134.6, 139.2, 151.2, 163.2.

2-Ethyl-6-methylbenzo[d]oxazole (3f): Yield 70%, 56.4 mg, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (t, J = 7.6 Hz, 3H), 2.45 (s, 3H), 2.92 (q, J = 7.6 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 7.26 $(s, 1H)$ 7.52 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 11.2, 21.9, 22.4, 110.7, 119.1, 125.4, 134.9, 139.4, 151.3, 167.8; IR (neat) 3384, 2959, 2924, 1730, 1575, 1454, 1259, 1117, 1072, 1037, 923, 811 cm⁻¹; HRMS (ES) calcd for C₁₀H₁₁NONa 184.0738 [M + Na]⁺; found 184.0734.

2,5-Dimethylbenzo[d]oxazole (3g):⁹ Yield 78%, 57.5 mg, light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 2.62 (s, 3H), 7.09 (d, J [=](#page-4-0) 8.3 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.45 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 9.2, 16.1, 104.2, 114.0, 120.1, 128.5, 136.4, 143.9, 158.6.

2-Ethyl-5-methylbenzo[d]oxazole $(3h):^{10}$ Yield 72%, 58.1 mg, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (t, J = 7.6 Hz, 3H), 2.44 (s, 3H), 2.93 (q, $J = 7.6$ Hz, 2H), 7.08 ([d,](#page-4-0) $J = 8.2$ Hz, 1H), 7.33 (d, $J = 8.3$ Hz, 1H), 7.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 10.9, 21.5, 22.2, 109.6, 119.5, 125.4, 133.8, 141.6, 149.1, 168.2.

5-Methoxy-2-methylbenzo[d]oxazole $(3i):^9$ Yield 75%, 61.3 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.59 (s, 3H), 3.82 (s, 3H), 6.86 (dd, J = 8.8, 2.3 Hz, 1H), 7.13 (d, J = 2.[3](#page-4-0) Hz, 1H), 7.32 (dd, $J = 8.8, 1.7$ Hz, 1H[\)](#page-4-0); ¹³C NMR (100 MHz, CDCl₃) δ 14.5, 55.9, 102.7, 110.2, 112.6, 142.4, 145.6, 157.0, 164.6.

2-Ethyl-5-methoxybenzo[d]oxazole (3j): Yield 73%, 64.4 mg, yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (t, J = 7.6 Hz, 3H), 2.92 (q, $J = 7.6$ Hz, 2H), 3.83 (s, 3H), 6.87 (dd, $J = 8.8$, 2.4 Hz, 1H), 7.17 (d, J = 2.2 Hz, 1H), 7.33 (d, J = 8.8 Hz, 1H); 13C NMR (100 MHz, CDCl₃) δ 10.9, 22.2, 55.9, 102.8, 110.3, 112.6, 142.2, 145.5, 157.0, 169.0; IR (neat) 2941, 1573, 1483, 1441, 1285, 1196, 1152, 1028, 839, 804 cm⁻¹; HRMS (ES) calcd for C₁₀H₁₂NO₂ 178.0868 [M $+ H$]⁺; found 178.0865.

5-Chloro-2-methylbenzo[d]oxazole (3k):⁹ Yield 67%, 56.3 mg, off white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.25 (d, J $= 8.6$ Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.62 ([s,](#page-4-0) 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.7, 111.0, 119.5, 124.8, 129.6, 142.7, 149.6, 165.4.

5-Chloro-2-ethylbenzo[d]oxazole (3l):¹⁰ Yield 69%, 62.6 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (t, J = 7.5 Hz, 3H), 2.95 (q, $J = 7.5$ Hz, 2H), 7.25 (d, $J = 8.5$ Hz, [1H](#page-4-0)), 7.38 (d, $J = 8.5$ Hz, 1H), 7.64 (s, 1H); ¹³C NMR (100 MHz, C[D](#page-4-0)Cl₃) δ 10.9, 22.3, 111.1, 119.7, 124.8, 129.6, 142.6, 149.5, 169.7.

6-Chloro-2-methylbenzo[d]oxazole (3m):¹¹ Yield 89%, 74.4 mg, off white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.27 $(d, J = 8.4 \text{ Hz}, 1H)$, 7.47 (s, 1H), 7.54 (d, J = 8.[4 H](#page-4-0)z, 1H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$ δ 14.7, 111.0, 120.0, 124.9, 130.2, 140.4, 151.3, 164.7.

6-Chloro-2-ethylbenzo[d]oxazole (3n): Yield 66%, 59.5 mg, off white solid, mp 40−42 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (t, J = 7.5 Hz, 3H), 2.94 (q, J = 7.5 Hz, 2H), 7.28 (dd, J = 7.8, 1.4 Hz, 1H), 7.50 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 10.9, 22.3, 111.1, 120.2, 124.8, 130.2, 140.4, 151.4, 169.8; IR (KBr) 3104, 2983, 1618, 1576, 1451, 1226, 1153, 924, 859, 828, 733 cm⁻¹; HRMS (EI) calcd for C₉H₈NOCl 181.0294 [M]⁺; found 181.0288.

5-Bromo-2-methylbenzo[d]oxazole (3o):⁹ Yield 80%, 84.0 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.33(d, J = 8.6 Hz, [1](#page-4-0)H), 7.39 (d, J = 8.6 Hz, 1H), 7.77 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.7, 111.5, 116.9, 122.5, 127.5, 143.2, 150.0, 165.2.

5-Bromo-2-ethylbenzo[d]oxazole (3p): Yield 73%, 82.2 mg, off white solid, mp 52−54 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (t, J = 7.6 Hz, 3H), 2.95 (q, J = 7.6 Hz, 2H), 7.33 (d, J = 8.6 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 10.9, 22.2, 111.5, 116.8, 122.6, 127.5, 143.1, 149.9, 169.4; IR (KBr) 3097, 2984, 1731, 1610, 1567, 1463, 1365, 1223, 1152, 929, 810 cm⁻¹; HRMS (EI) calcd for C₉H₈NOBr 224.9789, 226.9769; found 224.9795, 226.9770.

2-Methyl-5-nitrobenzo[d]oxazole $(3q)$:¹⁰ Yield 65%, 58.0 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.71 (s, 3H), 7.58 (d, J = 8.9 Hz, 1H), 8.27 (dd, J = 8.9, 2.2 Hz, 1H), [8.54](#page-4-0) (d, J = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.8, 110.6, 116.0, 120.9, 142.1, 145.3, 154.7, 167.3.

2-Ethyl-5-nitrobenzo[d]oxazole $(3r):^{10}$ Yield 64%, 61.1 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 1.49 (t, J = 7.6 Hz, 3H), 3.03 (q, J = 7.6 Hz, 2H), 7.58 (d, J = 8.9 Hz[, 1H](#page-4-0)), 8.27 (dd, J = 8.9, 2.2 Hz, 1H), 8.55 (d, $I = 2.1$ Hz, 1H).

5-Nitro-2-phenylbenzo[d]oxazole (3s):^{5c} Yield 40%, 48.3 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.62 (m, 3H), 7.66 $(d, J = 8.9 \text{ Hz}, 1H), 8.25 (d, J = 7.8 \text{ Hz}, 2H), 8.30 (d, J = 8.9 \text{ Hz}, 1H),$ $(d, J = 8.9 \text{ Hz}, 1H), 8.25 (d, J = 7.8 \text{ Hz}, 2H), 8.30 (d, J = 8.9 \text{ Hz}, 1H),$ $(d, J = 8.9 \text{ Hz}, 1H), 8.25 (d, J = 7.8 \text{ Hz}, 2H), 8.30 (d, J = 8.9 \text{ Hz}, 1H),$ 8.62 (s, 1H).

2-(4-Methoxyphenyl)benzo[d]oxazole $(3t):$ ^{5b} Yield 15%, 17 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 7.03 (dd, J = 8.9, 2.7 Hz, 2H), 7.31−7.34 (m, 2H), 7[.53](#page-4-0)−7.57 (m, 1H), 7.73−7.75 (m, 1H), 8.20 (dd, J = 8.9, 2.7 Hz, 2H).

2-Methyloxazolo[4,5-b]pyridine (3u):¹² Yield 59%, 39.4 mg, white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.71 (s, 3H), 7.28 (s, 1H), 7.78 (d, $J = 8.0$ Hz, 1H), 8.54 (s, 1H).

 $N-(2-Hydroxyphenyl)$ acetamide (4a):^{[6a](#page-4-0)} Yield 10%, 7.6 mg, off white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 2.10 (s, 3H), 6.76 (dd, J = 7.5, 7.4 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H[\), 6](#page-4-0).94 (dd, J = 7.6, 7.4 Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H), 9.32 (s, 1H), 9.76 (s, 1H); 13C NMR $(100 \text{ MHz}, \text{DMSO-}d_6) \delta$ 23.7, 115.9, 119.0, 122.4, 124.7, 126.5, 147.9, 169.0.

(E)-3-(2-Hydroxyphenylamino)-1,3-diphenylprop-2-en-1 one (4b): Yellowish solid, mp 146–148 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 6.14 (s, 1H), 6.31 (d, J = 8.0 Hz, 1H), 6.46 (dd, J = 7.2, 7.2 Hz, 1H), 6.86 (dd, J = 7.6, 7.2 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 7.42−7.55 (m, 8H), 8.01 (d, J = 7.2 Hz, 2H), 10.09 (s, 1H), 12.66 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 97.2, 116.5, 120.0, 125.3, 125.8, 128.0, 129.0, 129.1, 129.3, 130.4, 132.0, 137.1, 150.4, 162.3, 189.4. IR (KBr) 3376, 3154, 1587, 1479, 1343, 1285, 1222, 1096, 942, 851, 753, 695 cm-¹; HRMS (ES) calcd for $C_{21}H_{18}NO_2$ 316.1338 [M + H]⁺; found 316.1337; for C₂₁H₁₇NO₂Na 338.1157 [M + Na]⁺; found 338.1153.

N-(5-Chloro-2-hydroxyphenyl)acetamide (4c):^{6a} Yield 29%, 26.9 mg, off white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 2.11 (s, 3H), 6.86 (d, J = 8.6 Hz, 1H), 6.96 (dd, J = 2.2, 8.6 Hz[, 1H](#page-4-0)), 7.96 (d, J $= 2.1$ Hz, 1H), 9.30 (s, 1H), 10.17 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 23.8, 116.3, 121.0, 122.1, 123.5, 127.8, 146.3, 169.1.

N-(5-Bromo-2-hydroxyphenyl)acetamide (4d):¹³ Yield 17%, 19.4 mg, off white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 2.11 (s, 3H), 6.82 (d, J = 8.6 Hz, 1H), 7.07 (dd, J = 8.6, 2.3 Hz, 1H), 8.08 (d, J $= 2.1$ Hz, 1H), 9.29 (s, 1H), 10.19 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 23.8, 109.6, 116.9, 123.8, 126.4, 128.2, 146.7, 169.1.

(E)-4-((2-Hydroxyphenyl)amino)pent-3-en-2-one (4e): Yellowish solid, mp 188−190 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 1.961 (s, 3H), 1.964 (s, 3H), 5.20 (s, 1H), 6.78 (dd, J = 7.4, 7.8 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 7.01 (dd, J = 7.4, 7.7 Hz, 1H), 7.16 (d, J $= 7.8$ Hz, 1H), 9.92 (s, 1H), 12.14 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 19.6, 29.0, 97.3, 115.8, 119.1, 125.0, 126.1, 150.3, 160.0, 194.3. IR (KBr) 3433, 2724, 2602, 1606, 1551, 1459, 1315, 1240, 1175, 1027, 929, 837, 750 cm⁻¹; HRMS (ES) calcd for $C_{11}H_{14}NO_2$ 192.1025 $[M + H]^+$; found 192.1024l for $C_{11}H_{13}NO_2Na$ 214.0844 [M + Na]⁺; found 214.0840. The structure of 4e was also confirmed through NOE determination (see Supporting Information).

■ ASSOCIATED CONTENT

S Supporting Information

Characterization of compounds, including copies of ${}^{1}H$ and ${}^{13}C$ NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTH[OR INFORMATIO](http://pubs.acs.org)N

Corresponding Authors

*E-mail: yuxiaoqiang@dlut.edu.cn. *E-mail: mingbao@dlut.edu.cn.

Notes

The auth[ors declare no compe](mailto:mingbao@dlut.edu.cn)[ting](mailto:yuxiaoqiang@dlut.edu.cn) financial interest.

■ ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (Nos. 21273026 and 21173032) for their financial support.

■ REFERENCES

(1) Don, M.-J.; Shen, C.-C.; Lin, Y.-L.; Syu, W.-J.; Ding, Y.-H.; Sun, C.-M. J. Nat. Prod. 2005, 68, 1066.

(2) For examples, see: (a) Kumar, D.; Jacob, M. R.; Reynolds, M. B.; Kerwin, S. M. Bioorg. Med. Chem. 2002, 10, 3997. (b) Kočí, J.; Klimešová, V.; Waisser, K.; Kaustová, J.; Dahse, H.-M.; Möllmann, U. Bioorg. Med. Chem. Lett. 2002, 12, 3275. (c) McKee, M. L.; Kerwin, S. M. Bioorg. Med. Chem. 2008, 16, 1775.

(3) (a) Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957, 79, 427. (b) Yamamoto, K.; Watanabe, H. Chem. Lett. 1982, 1225. (c) Pottorf, R. S.; Chadha, N. K.; Katkevics, M.; Ozola, V.; Suna, E.; Ghane, H.; Regberg, T.; Player, M. R. Tetrahedron Lett. 2003, 44, 175. (d) Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 4823.

(4) (a) Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M. Org. Lett. 2003, 5, 3713. (b) Blacker, A. J.; Farah, M. M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J. Org. Lett. 2009, 11, 2039. (c) Patil, S. S.; Bobade, V. D. Synth. Commun. 2010, 40, 206. (d) Maddila, S.; Jonnalagadda, S. B. J. Chil. Chem. Soc. 2012, 57, 1099. (5) (a) Altenhoff, G.; Glorius, F. Adv. Synth. Catal. 2004, 346, 1661. (b) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802. (c) Bonnamour, J.; Bolm, C. Org. Lett. 2008, 10, 2665. (d) Saha, P.; Ramana, T.; Purkait, N.; Ashif, A. M.; Paul, R.; Punniyamurthy, T. J. Org. Chem. 2009, 74, 8719.

(6) (a) Li, K.-L.; Du, Z.-B.; Guo, C.-C.; Chen, Q.-Y. J. Org. Chem. 2009, 74, 3286. (b) Rambabu, D.; Murthi, P. R. K.; Dulla, B.; Rao, M. V. B.; Pal, M. Synth. Commun. 2013, 43, 3083.

(7) (a) Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 6646. (b) Sridhar, M.; Narsaiah, C.; Sairam, V. V.; Reddy, G. K.;

Raveendra, J.; Reddy, M. K. K.; Ramanaiah, B. C. Tetrahedron Lett. 2011, 52, 6103.

(8) Shareef, M. M.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Org. Lett. 2014, 16, 764.

(9) Lee, J. J.; Kim, J.; Jun, Y. M.; Lee, B. M.; Kim, B. H. Tetrahedron 2009, 65, 8821.

(10) Farahi, M.; Karami, B.; Azari, M. C. R. Chimie 2013, 16, 1029. (11) Gershon, H.; Clarke, D. D.; Gershon, M. Monatsh. Chem. 1993, 124, 367.

(12) Suresh, D.; Dhakshinamoorthy, A.; Pitchumani, K. Tetrahedron Lett. 2013, 54, 6415.

(13) Armitage, M.; Bret, G.; Choudary, B. M.; Kingswood, M.; Loft, M.; Moore, S.; Smith, S.; Urquhart, M. W. J. Org. Process Res. Dev. 2012, 16, 1626.